23 какое число четное или нечетное. Чётные — нечётные числа

Все натуральные числа с точки зрения делимости на 2 раз­биваются на два множества: множество четных чисел и множество нечетных чисел.

Четные числа делятся нацело на 2, а нечетные при делении на 2 дают остаток 1. 0 число четное.

При решении задач, в которых используются свойство четность важно помнить и применять следующие правила:

  • Сумма и разность двух нечетных чисел является четным числом
  • Сумма и разность двух четных чисел является четным числом.
  • Сумма и разность двух чисел, из которых одно четное, а другое нечетное, является нечетным числом.
  • Произведение двух нечетных чисел является нечетным числом.
  • Произведение двух чисел, из которых одно четное, явля­ется четным числом.

Разберем несколько примеров.

Задача 1.

Можно ли разменять 25 рублей при помощи десяти купюр достоинством 1, 3 и 5 рублей?

Решение.

Нельзя. И вовсе не потому, что таких купюр не существует. Сумма четного количества нечетных слагаемых не может быть нечетным числом.

Ответ: Нельзя.

Задача 2.

В наборе было 23 гири массой 1 кг, 2 кг, 3 кг, … 23 кг. Можно ли их разложить на две равные по массе части, если гирю в 21 кг потеряли?

Решение.

Масса всех гирь S = (1 + 23) + (2 + 22) + … + (11 + 13) + 12 – число четное.

Следовательно, (S – 21) на две равные по весу части не разложить, поскольку это число нечётное.

Ответ. 23 гири с данной массой на две равные части не разложить.

Задача 3.

Кузнечик прыгает по прямой в разные стороны: первый прыжок на 1 см, второй – на 2 см, третий – на 3 см и так далее. Может ли он после двадцать пятого прыжка вернуться в ту точку, с которой начал?

Решение.

Пусть кузнечик прыгает по числовой прямой в разные стороны и начинает из точки с координатой 0. После 25 прыжка он окажется в точке с нечетной координатой (среди чисел от 1 до 25 нечетных нечетное число). Так как 0 – число четное, то он не может вернуться в исходное положение.

Ответ. После 25 прыжка кузнечик не может вернуться в ту точку, с которой начал.

Задача 4.

В древней рукописи приведено описание города, расположенного на 8 островах. Острова соединены между собой и с материком мостами. На материк выходят 5 мостов; на 4 островах берут начало по 4 моста, на 3 островах берут начало по 3 моста и на один остров можно пройти только по одному мосту. Может ли быть такое расположение мостов?

Решение.

Найдем число концов у всех мостов:

5 + 4 · 4 + 3 · 3 + 1 = 31.

31 является числом нечетным.

Так как число концов у всех мостов должно быть четным, то такого расположения мостов быть не может.

Ответ. Не может.

Задача 5.

На столе стоит 6 стаканов. Из них 5 стаканов стоят пра­вильно, а один перевернут донышком вверх. Разре­шается переворачивать любые 2 стакана за один ход. Можно ли все стаканы поставить правильно за конечное число ходов?

Решение.

Для решения этой задачи попробуем сформулировать условие на языке чисел. Для этого событие «стакан стоит правильно» пронумеруем 1, а «стакан стоит не правильно» – 0. Тогда вместо рисунка со стаканами возникнет последовательность из пяти единичек и одного нуля. Сумма всех чисел последовательности равна нечетному числу 5. При переворачивании стакана в нашей последовательности 0 будет меняться на 1 и наоборот – 1 на 0. Наша цель – получить ряд из одних 1. Их должно стать 6 и сумма должна стать также равной 6. Это число четное.

Во время одной из финальных сцен фильма Квентина Тарантино "Джанго освобожденный", актер Леонардо Ди Каприо настолько вошел в образ, что реально поранил руку разбитым стаканом, и, несмотря на порез и кровь, актер доиграл сцену до конца. Тарантино не остановил съемки и оставил импровизацию в финальной версии фильма.

Но что происходит с суммой при переворачивании 2 стаканов одновременно? Либо две 1 заменяются 0, либо два 0 – единицами, либо одна 1 на 0 и один 0 на 1. А что же происходит с суммой? В первом и втором случаях она изменяется на 2, а в третьем – не меняется вообще. А это значит, что она никогда не станет четной и никогда не сможет стать равной 6, как, между прочим, ни 2 и не 4.

Ответ. Невозможно.

Задача 6.

Петя купил общую тетрадь объемом 96 листов и про­нумеровал все ее страницы по порядку числами от 1 до 192. Вася вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. Могло ли у него получиться число 2006?

Решение.

Обратим внимание на сумму номеров страниц на одном листе. Она нечетна, поскольку одной странице соответствует нечетное число, а второй странице листа чётное. Но листов 25. Тогда сумма всех номеров вырванных страниц нечетна. А что получил Вася? Следовательно, он не прав!

Ответ. Не могло.

Задача 7.

Каждая из 10 цифр написана на карточке. Таких комплектов изготовили 2. Получили 20 карточек, на каждой из которых написана цифра 0 или 1 или 2 ... или 9 и карточек с одинаковыми цифрами по 2. Доказать, что нельзя разложить эти карточки в один ряд так, чтобы между одинаковыми карточками с цифрой k лежало ровноk карточек. (k = 0, 1, 2, …, 9).

Решение.

Допустим, что разложить карточки указанным способом удалось. Тогда их легко пронумеровать по порядку числами от 1 до 20. Предположим, что каждая первая, встретившаяся в ряду, карточка с цифрой k имеет номер а k а последняя с той же цифрой k номер b k . Тогда b k а k = k + 1. Тогда

∑(b k а k) = ∑b k ∑а k = (b 0 – а 0) + (b 1 – а 1) + (b 2 а 2) + (b 3 а 3) + … + (b 9 а 9) = 1 + 2 + 3 + 4 + … + 10 = 55.

Но ∑b k + ∑а k = 1 + 2 + 3 + … + 20 = 210. (Сумма всех номеров карточек.).

Получили ∑b k ∑а k = 55 и ∑b k + ∑а k = 210. Сложив эти равенства, получаем 2∑b k = 265, что невозможно. (Во всех случаях под знаком ∑ понимается суммирование по k от 0 до 9.) Справа число четное, а слева – нечетное. Это противоречие доказывает, что наше допущение о возможности разложить карточки указанным способом ошибочно.

Ответ. Утверждение доказано.

Если вы хорошо усвоили материал данной статьи, то решение следующих задач у вас не должно вызывать особых затруднений. В случае затруднений, попробуйте найти среди решенных задачи родственного содержания.

  1. Вдоль забора растет 8 кустов малины. Число ягод на соседних кустах отличается на единицу. Может ли на всех кустах вместе быть 225 ягод?
  2. В Королевстве 1 001 город. Король приказал проло­жить между городами дороги так, чтобы из каждого города выходило 7 дорог. Смогут ли подданные спра­виться с приказом короля?

Желаю успехов!

Остались вопросы? Не знаете, как применять свойства чётности и нечётности чисел?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Определения

  • Чётное число - целое число, которое делится без остатка на 2: …, −4, −2, 0, 2, 4, 6, 8, …
  • Нечётное число - целое число, которое не делится без остатка на 2: …, −3, −1, 1, 3, 5, 7, 9, …

В соответствии с этим определением нуль является чётным числом.

Если m чётно, то оно представимо в виде , а если нечётно, то в виде , где .

В разных странах существуют связанные с количеством даримых цветов традиции.

В России и странах СНГ чётное количество цветов принято приносить лишь на похороны умершим. Однако, в случаях, когда в букете много цветов (обычно больше ), чётность или нечётность их количества уже не играет никакой роли.

Например, вполне допустимо подарить юной даме букет из 12 или 14 цветов или срезов кустового цветка, если они имеют множество бутонов , у которых они, в принципе, не подсчитываются.
Тем более это относится к б́ольшему количеству цветов (срезов), даримых в других случаях.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Чётные и нечётные числа" в других словарях:

    Чётность в теории чисел характеристика целого числа, определяющая его способность делиться нацело на два. Если целое число делится без остатка на два, оно называется чётным (примеры: 2, 28, −8, 40), если нет нечётным (примеры: 1, 3, 75, −19).… … Википедия

    Чётность в теории чисел характеристика целого числа, определяющая его способность делиться нацело на два. Если целое число делится без остатка на два, оно называется чётным (примеры: 2, 28, −8, 40), если нет нечётным (примеры: 1, 3, 75, −19).… … Википедия

    Чётность в теории чисел характеристика целого числа, определяющая его способность делиться нацело на два. Если целое число делится без остатка на два, оно называется чётным (примеры: 2, 28, −8, 40), если нет нечётным (примеры: 1, 3, 75, −19).… … Википедия

    Чётность в теории чисел характеристика целого числа, определяющая его способность делиться нацело на два. Если целое число делится без остатка на два, оно называется чётным (примеры: 2, 28, −8, 40), если нет нечётным (примеры: 1, 3, 75, −19).… … Википедия

    Чётность в теории чисел характеристика целого числа, определяющая его способность делиться нацело на два. Если целое число делится без остатка на два, оно называется чётным (примеры: 2, 28, −8, 40), если нет нечётным (примеры: 1, 3, 75, −19).… … Википедия

    Чётность в теории чисел характеристика целого числа, определяющая его способность делиться нацело на два. Если целое число делится без остатка на два, оно называется чётным (примеры: 2, 28, −8, 40), если нет нечётным (примеры: 1, 3, 75, −19).… … Википедия

    Слегка избыточное число, или квазисовершенное число избыточное число, сумма собственных делителей которого на единицу больше самого числа. До настоящего времени не было найдено ни одного слегка избыточного числа. Но со времён Пифагора,… … Википедия

    Целые положительные числа, равные сумме всех своих правильных (т. е. меньших этого числа) делителей. Например, числа 6 = 1+2+3 и 28 = 1+2+4+7+14 являются совершенными. Ещё Евклидом (3 в. до н. э.) было указано, что чётные С. ч. можно… …

    Целые (0, 1, 2,...) или полуцелые (1/2, 3/2, 5/2,...) числа, определяющие возможные дискретные значения физических величин, которые характеризуют квантовые системы (атомное ядро, атом, молекулу) и отдельные элементарные частицы.… … Большая советская энциклопедия

Эмили Блант и Джон Красински, сыгравшие семейную пару в фильме «Тихое место», женаты в реальной жизни.

Книги

  • Математические лабиринты и ребусы, 20 карточек , Барчан Татьяна Александровна, Самоделко Анна. В наборе: 10 ребусов и 10 математических лабиринтов на темы: - Числовой ряд; - Чётные и нечётные числа; - Состав числа; - Счёт парами; - Упражнения на сложение и вычитание. В комплекте 20…

Что означают чётные и нечётные числа в духовной нумерологии. В изучении это очень важная тема! Чем по своей СУТИ чётные числа отличаются от нечётных чисел?

Чётные числа

Общеизвестно, что чётные числа — те, которые делятся на два. То есть, числа 2, 4, 6, 8, 10, 12, 14, 16, 18 и так далее.

А что означают чётные числа относительно ? Какова нумерологическая суть деления на два? А суть в том, что все числа которые делятся на два, несут в себе некоторые свойства двойки.

У несколько значений. Во-первых, это самая «человечная» цифра в нумерологии. То есть, цифра 2 отражает в себе всю гамму человеческих слабостей, недостатков и достоинств — точнее, то, что в обществе принято считать достоинствами и недостатками, «правильностями» и «неправильностями».

А поскольку данные ярлыки «правильности» и «неправильности» отражают наши ограниченные взгляды на мир, то и двойка вправе считаться самым ограниченным, самым «тупым» числом в нумерологии. Отсюда понятно, что чётные числа гораздо более «твердолобы» и прямолинейны, чем их нечётные собратья, которые на два не делятся.

Это, впрочем, не говорит о том, что чётные числа хуже нечётных чисел. Просто они другие и отражают иные формы человеческого бытия и сознания в сравнении с нечётными числами. Чётные числа в духовной нумерологии всегда подчиняются законам обычной, материальной, «земной» логики. Почему? Потому что другое значение двойки: стандартно-логическое мышление. И все чётные числа в духовной нумерологии так или иначе, подчиняются определённым логическим правилам восприятия действительности.

Элементарный пример: если камень подбросить вверх, он, набрав определённую высоту, устремится затем к земле. Так «думают» чётные числа. А нечётные числа запросто предположат, что камень улетит в космос; или не долетит, а застрянет где-нибудь в воздухе… надолго, на века. Или просто растворится! Чем нелогичнее гипотеза, тем ближе она к нечётным числам.

Нечётные числа

Нечётные числа — те, которые не делятся на два: числа 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 и так далее. С позиции духовной нумерологии нечётные числа подчиняются не материальной, а духовной логике.

Что, кстати, даёт пищу для размышления: почему число цветов в букете для живого человека нечётное, а для мёртвого — чётное… Не потому ли, что материальная логика (логика в рамках «да-нет») мертва относительно души человека?

Видимые совпадения материальной логики и духовной происходят очень часто. Но пусть это не вводит вас в заблуждение. Логика духа, то есть логика нечётных чисел , никогда в полной мере не прослеживается на внешних, физических уровнях человеческого бытия и сознания.

Возьмём для примера — число любви. Мы разглагольствуем о любви на каждом шагу. Мы признаёмся в ней, мечтаем о ней, украшаем ею свою жизнь и чужую жизнь.

Но что на самом деле мы знаем о любви? О той всепроникающей Любви, которая пронизывает собой все сферы Мироздания. Разве мы можем согласиться и принять, что в ней столько же холода, сколько и тепла, столько же ненависти, сколько доброты?! В состоянии ли мы осознать, что именно эти парадоксы составляют высшую, творческую суть Любви?! Парадоксальность — вот одно из ключевых свойств нечётных чисел. В толковании нечётных чисел надо понимать: не всегда то, что кажется человеку, является действительно существующим. Но в то же время, если что-то кому-то кажется, значит оно уже существует. Есть различные уровни Существования, и иллюзия — один из них…

Кстати, зрелость ума характеризуется способностью воспринимать парадоксы. Поэтому для объяснения нечётных чисел требуется чуть больше «мозгов», чем для объяснения чётных чисел.

Чётные и нечётные числа в нумерологии

Подведём итоги. В чём главное отличие чётных чисел от нечётных?

Чётные числа более предсказуемы (кроме числа 10), основательны и последовательны. События и люди, связанные с чётными числами, более устойчивы и объяснимы. Вполне доступны для внешних изменений, но только для внешних! Внутренние перемены — область нечётных чисел…

Сильвестр Сталонне был настолько беден, что ему пришлось продать любимую собачку за 40 долларов. До того, как стать известным голливудским актером, у Сталлоне едва хватало денег на еду. Поэтому он продал свою собаку Буткуса за 40 долларов. Но позже, он выкупил ее обратно, однако для этого ему пришлось заплатить 15 000 долларов.

Нечётные числа — взбалмошны, свободолюбивы, неустойчивы, непредсказуемы. Они всегда преподносят сюрпризы. Вот вроде и знаешь смысл какого-то нечётного числа, а оно, это число, вдруг начинает вести себя так, что заставляет тебя заново пересмотреть чуть ли не всю твою жизнь…

Обратите внимание!

В магазины уже поступила моя книга под названием «Духовная нумерология. Язык чисел». На сегодняшний день это самое полное и востребованное из всех существующих эзотерических пособий о смысле чисел. Подробнее об этом, а также для заказа книги пройдите по следующей ссылке: ««

———————————————————————————————

Во вселенной существуют пары противоположностей, которые являются важным фактором ее устройства. Основные свойства, которые нумерологи приписывают нечетным (1, 3, 5, 7, 9) и четным (2, 4, 6, 8) числам, как парам противоположностей, следующие:

Нечетные числа обладают гораздо более яркими свойствами. Рядом с энергией "1", блеском и удачливостью "3", авантюрной подвижностью и многогранностью "5", мудростью "7" и совершенством "9" четные числа выглядят не столь ярко. Насчитывается 10 основных пар противоположностей, существующих во Вселенной. Среди этих пар: четное - нечетное, один - много, правое - левое, мужское - женское, добро - зло. Один, правое, мужское и доброе ассоциировалось с нечетными числами; много, левое, женское и злое - с четными.

Нечетные числа обладают некой производящей серединой, в то время как в любом четном числе есть воспринимающее отверстие как бы лакуна внутри себя. Мужские свойства фаллических нечетных чисел вытекают из того факта, что они сильнее четных. Если четное число расщепить пополам, то, кроме пустоты, посередине ничего не останется. Нечетное число разбить непросто, потому что посередине остается точка. Если же соединить вместе четное и нечетное числа, то победит нечетное, так как результат всегда будет нечетным. Именно поэтому нечетные числа обладают мужскими свойствами, властными и резкими, а четные - женскими, пассивными и воспринимающими. Нечетных чисел нечетное число: их пять. Четных чисел четное число - четыре.

Нечетные числа - солнечные, электрические, кислотные и динамичные. Они являются слагаемыми; их с чем либо складывают. Четные числа - лунные, магнетические, щелочные и статичные. Они являются вычитаемыми, их уменьшают. Они остаются без движения, потому что имеют четные группы пар (2 и 4; 6 и 8).

Если мы сгруппируем нечетные числа, одно число всегда останется без своей пары (1 и 3; 5 и 7; 9). Это делает их динамичными.

Два подобных числа (два нечетных числа или два четных) не являются благоприятными.

Четное + четное = четное (статичное) 2+2=4
четное + нечетное = нечетное (динамичное) 3+2=5
нечетное + нечетное = четное (статичное) 3+3=6

Некоторые числа дружественны; другие противостоят друг другу. Взаимоотношения чисел определяются отношениями между планетами, которые ими управляют. Когда два дружественных числа соприкасаются, их сотрудничество не очень продуктивно. Подобно друзьям, они расслабляются - и ничего не происходит. Но когда в одной комбинации находятся враждебные числа, они заставляют друг друга быть настороже и побуждают к активным действиям; таким образом, эти два человека работают намного больше. В таком случае, враждебные числа оказываются на самом деле друзьями, а друзья - настоящими врагами, тормозящими прогресс. Нейтральные числа остаются неактивными. Они не дают поддержки, не вызывают и не подавляют активность.

О таинственном влиянии чисел, которые нас окружают, известно с древнейших времен. Каждая цифра имеет свое особое значение и обладает своим воздействием. И деление чисел на четные и нечетные является очень важным для определения нашей дальнейшей судьбы.

Чет и нечет

В нумерологии (науке о связях чисел с жизнью людей) нечетные числа (1, 3, 5, 7, 9, 11 и так далее) считаются выразителями мужского начала, которое в восточной философии называется — ян. Их также называют солнечными, потому что они несут энергию нашего светила. Такие цифры отражают поиск, стремление к чему-то новому.

Четные же числа (которые без остатка делятся на 2) говорят о женской природе (в восточной философии — инь) и энергетике Луны. Их суть в том, что они изначально тяготеют к двойке, поскольку делятся на нее. Эти цифры говорят о стремлении к логическим правилам отображения действительности и нежелании выйти за их пределы.

Другими словами: четные цифры более правильны, но в то же время более ограничены и прямолинейны. А нечетные способны помочь выбраться из скучного и серого бытия.

Нечетных чисел больше (ноль в нумерологии имеет собственное значение и не считается четным числом) — пять (1, 3, 5, 7, 9) против четырех (2,4,6, 8). Их более сильная энергия выражается в том, что при их сложении с четными числами снова получается нечетное число.

Противопоставление четных и нечетных чисел входит в общую систему противоположностей (один -много, мужчина — женщина, день -ночь, правый — левый, добро — зло и т.п.). При этом с нечетными числами связаны первые понятия, а с четными-вторые.

Таким образом, всякое нечетное число обладает мужскими характеристиками: властностью, резкостью, способностью к восприятию чего-то нового, а любое четное наделено женскими свойствами: пассивностью, стремлением сгладить любой конфликт.

Всем цифрам в нумерологии свойственны определенные значения:

  • Единица несет в себе активность, целеустремленность, инициативу.
  • Двойка — восприимчивость, слабость, готовность подчиняться.
  • Тройка — веселье, артистизм, удачливость.
  • Четверка — трудолюбие, однообразие, скуку, безвестность, поражение.
  • Пятерка — предприимчивость, успехи в любви, движение к цели.
  • Шестерка — простоту, спокойствие, тяготение к домашнему уюту.
  • Семерка — мистику, таинственность.
  • Восьмерка — материальные блага.
  • Девятка — интеллектуальное и духовное совершенство, высокие достижения.

Голливудские кинокомпании безумно предприимчивы и экономны. Они часто используют один и тот же реквизит или декорации повторно в следующих картинах. Так, декорации городка Хиллвэлли, где происходят все события картины «Назад в будущее», с 1985 года неоднократно использовались в съемках 104 различных картин, а декорации со съемок фильма «Инопланетянин» Стивена Спилберга использовали 37 раз. Рекордсменом являются декорации Чарли Чаплина из ленты «Золотая лихорадка». Они были задействованы на съемках двухсот фильмов.

Как видим, нечетные цифры обладают гораздо более яркими свойствами. Согласно учению знаменитого древнегреческого математика Пифагора, именно они являлись олицетворением добра, жизни и света, а также символизировали правую от человека сторону — сторону удачи.

Четные же цифры ассоциировались с неудачной левой стороной, злом, тьмой и смертью. Эти взгляды пифагорейцев позже отразились в некоторых приметах (например, что нельзя живому человеку дарить четное количество цветов или что встать с левой ноги — к неудачному дню), хотя у разных народов они могут быть разными.

Со времен Пифагора было принято считать, что «женские» четные числа ассоциируются со злом потому, что легко расщепляются на две половины — и значит, можно говорить, что внутри них пустое пространство, первобытный хаос. А нечетное число расщепить на равные части без остатка не получится, следовательно, оно содержит внутри себя нечто цельное и даже священное (в Средние века некоторые философы-теологи утверждали, что внутри нечетных чисел живет Бог).

В современной нумерологии принято учитывать многие окружающие нас цифры — например, номера телефонов или квартир, даты рождения и знаменательных событий, числа имени и фамилии и т.п.

Наибольшее значение для нашей жизни имеет так называемое число судьбы, которое высчитывается по дате рождения. Нужно сложить все цифры этой даты и «свернуть» их до простого числа.

Скажем, вы родились 28 сентября 1968 года (28.09.1968). Складываем цифры: 2+8+0+9+1+9+ 6 -I- 8 = 43; 4 + 3 = 7. Следовательно, ваше число судьбы — 7 (как было сказано выше — число мистики и таинственности).

Точно так же можно проанализировать даты важных для вас событий. В этом отношении очень показательна судьба знаменитого Наполеона. Он родился 15 августа 1769 года (15.08.1769), следовательно, его число судьбы равно единице:

1 + 5 + 0 + 8 + 1 + 7 + 6 + 9 = 37; 3 + 7 = 10; 1 + 0 = 1.

Это нечетное число, согласно современной нумерологии, несет в себе активность, целеустремленность, инициативу -качества, благодаря которым Наполеон проявил себя. Он стал французским императором 2 декабря 1804 года (02.12.1804), число этой даты — девятка (0 + 2+1 + 2 + 1 + 8 + 0 + 4 = 18; 1 + 8 = 9), которая является числом высоких достижений. Он скончался 5 мая 1821 года (05.05.1821), число этого дня — четверка (0 + 5 + 0 + 5 + 1+ 8 + 2 + 1 = 22; 2 + 2 = 4), которая означает безвестность и поражение.

Древние люди не зря говорили, что цифры правят миром. Пользуясь знаниями нумерологии, вы легко можете подсчитать, какие события сулит та или иная дата — и в каких случаях следует воздержаться от ненужных действий.

Читайте также...

  • К чему снится рыжий кот женщине
  • Толкование снов рыжий кот
  • К чему снится мертвая рыба?
  • «Сонник мертвая Рыба приснилась, к чему снится во сне мертвая Рыба